

EN Product Information Elan-tech ® ADH 90.91

AS 90/AW 91 100:45 by weight

Sales office South Europe:

ELANTAS Italia S.r.l.
Strada Antolini n° 1 loc. Lemignano
43044 Collecchio (PR)
Italy
Tel +39 0521 304777
Fax +39 0521 804410
EEMEurope.ELANTAS@altana.com
info.elantas.italia@altana.com

www.elantas.com

Resin

Hardener

Mixing ratio by weight

Structural adhesive

AS 90

AW 91

100:45
Mixing ratio by volume

100:50

Cartridges kit

Applications:

Resin

ADH 90.91

resilient structural bonding of large surfaces. Structural adhesive for nautical applications.

Assembly of heterogenous materials, glass, metals, wood, composite materials.

Processing: Spatula application or with mixing/dispensing devices.

Room temperature or hot curing. The post-curing by subministration of heat is necessary to achieve the thermal resistance indicated in the data sheet. Also available in cartridges of 400 ml.

Description: Two component modified, thixotropic epoxy system. Solvent free. Easy mixing ratio 2:1 by

volume. High toughness. Very good thermal shock resistance. The system also cures at a lower

temperature than 20°C. Sag resistance up to 10 mm.

SYSTEM SPECIFICATIONS

Viscosity at:	50°C	IO-10-50 (EN13702-2)	mPas	180.000	300.000
Hardener					
Viscosity at:	25°C	IO-10-50 (EN13702-2)	mPas	85.000	130.000
Pot life	(50mm;200ml)	IO-10-53 (*)	min	20	30
	TYPICAL SYST	EM CHARACTERISTICS			
Processing Data					
Mixing ratio by weig	ht	for 100 g resin	g	100):45
Mixing ratio by volume		for 100 ml resin	ml	100:50	
Resin Colour				Mi	lky
Hardener Colour				Ora	nge
Viscosity at: 25°C	Resin	IO-10-50 (EN13702-2)	mPas	350.000	450.000
Density at: 25°C Resin		IO-10-51 (ASTM D 1475)	g/ml	1,16	1,20
Density at: 25°C Hardener		IO-10-51 (ASTM D 1475)	g/ml	0,97	1,00
Pot life	25°C (40mm;100ml)	IO-10-53 (*)	min	35	45
Exothermic peak	25°C (40mm;100ml)	IO-10-53 (*)	°C	125	140
Initial mixture viscos	sity at: 25°C	IO-10-50 (EN13702-2)	mPas	145.000	225.000
Gelation time	25°C (1mm)	IO-10-88 (ASTM D5895-03)	h	5	6
Setting time	25°C 0,1 mm	(*)	h	6	7
Suggested curing cycles		(**)		5 h 70°C	

ADH 90.91 - AS 90/AW 91

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 5 h 70°C (except different specifications)

Colour				Orange	
Density 25°C		IO-10-54 (ASTM D 792)	g/ml	1,09	1,13
Hardness 25°C		IO-10-58 (ASTM D 2240)	Shore D/15	73	77
Glass transition (Tg)	48h 15°C	IO-10-69 (ASTM D 3418)	°C	40	47
	24h RT		°C	40	47
	7 days RT		°C	50	57
	5h 70°C		°C	75	80
Max recommended operating temperature		(***)	°C	80 - 90	
Shear strength by tensi			MD	4 =	0.0
	cured 8hRT (tested RT)	IO-10-80 (ASTM D 100	4	1,5	2,0
	cured 48h15°C (tested RT)		MPa	21,5	26,0
	cured 24hRT (tested RT)		MPa	22,0	27,0
	cured 7days RT (tested RT)		MPa	24,5	29,5
	cured 5h70°C (tested RT)		MPa	25,5	31,0
- Aluminium cured 48	,		MPa	19,5	23,5
- Aluminium cured 5h	` '		MPa	24,5	29,5
- Aluminium cured 5h	,		MPa	21,5	26,0
- Aluminium cured 5h	70°C (tested 80°C)		MPa	13,5	16,5
Flexural strength		IO-10-66 (ASTM D 790)	MN/m²	70	80
Strain at break		IO-10-66 (ASTM D 790)	%	4,5	7,5
Flexural elastic modulus	3	IO-10-66 (ASTM D 790)	MN/m²	2.000	2.500
Tensile strength		IO-10-63 (ASTM D 638)	MN/m²	45	55
Elongation at break		IO-10-63 (ASTM D 638)	%	4,5	6,5

IO-00-00 = Elantas Italia's test method. The correspondent international method is indicated whenever possible.

nd = not determined na = not applicable $RT = TA = laboratory room temperature (23<math>\pm$ 2°C)

Conversion units: 1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa

^(*) for larger quantities pot life is shorter and exothermic peak increases

^(**) the brackets mean optionality

^(***) The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

ADH 90.91 - AS 90/AW 91

Instructions: The surfaces must be clean and dry. Generally a mechanical abrasion or sanding followed by

degreasing with solvent (ex. acetone) is sufficient. Add the appropriate quantity of the hardener to the resin, mix carefully. The final cleaning of the equipment can be carried out with normal

solvent such as acetone, nitro, etc.

Curing Post-curing:

Post curing is always advisable for RT curing systems in order to stabilize the component and to

reach the best properties. It is necessary when the component works at a high temperature.

Storage: Epoxy resins and their hardeners can be stored for two years in the original sealed containers

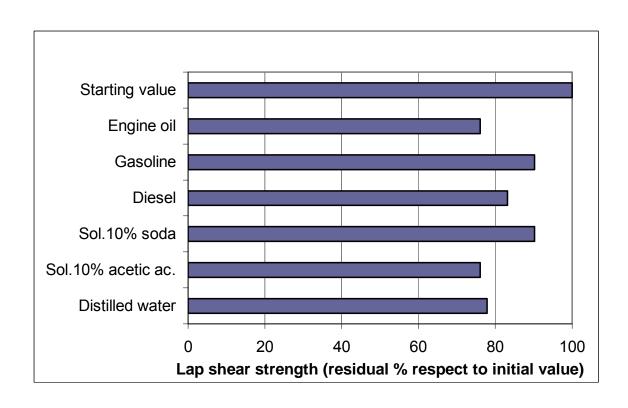
stored in a cool, dry place. The hardeners are moisture sensitive therefore it is good practice to

close the vessel immediately after each use.

Handling precautions:

Refer to the safety data sheet and comply with regulations relating to industrial health and waste

disposal.


emission date: February 2007/R&S revision n° 02 July 2007/R&S

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.

ADH 90.91 - AS 90/AW 91

Lap shear strength after immersion in different liquid media (ASTM D1002)

Support: stainless steel Curing cycle: 5h 70°C

The lap shear strength was determined after immersion for 30 days at 23±2 °C.