

EN Product Information

Elan-tech®

AS 89.1/AW 89.1 100:45

ADH 891.891

Sales office South Europe:

ELANTAS Italia S.r.I.
Strada Antolini n° 1 loc. Lemignano
43044 Collecchio (PR)
Italy
Tel +39 0521 304777
Fax +39 0521 804410
EEMEurope.ELANTAS@altana.com
info.elantas.italia@altana.com
www.elantas.com

Setting time

Suggested curing cycles

25°C

0,1mm

Resin Hardener Mixing ratio by weight AS 89.1 AW 89.1 100:45

Application: Thermal resistant structural bonding. Adhesive for assembly of: composite materials, metals,

automotive components, sport components.

Processing: Brush application by spatula with mixing/dispensing devices. Room temperature or hot curing. The

post-curing by subministration of heat is necessary to achieve the thermal resistance indicated in

the data sheet. Available also in cartridges of 400ml.

Description: Two component unfilled epoxy system, modified, thixotropic. Easy mixing ratio 2:1 by volume.

Solvent free. Sag resistance till 5mm. High toughness. Good thermal resistance. It is advisable

(*)

(**)

h

3,0 - 4,0

2hrs at 80°C

that the curing of the system at temperatures not lower than 20-25°C.

	SYSTE	EM SPECIFICATIONS			
Resin					
Viscosity at:	25°C	IO-10-50 (EN13702-2)	mPas	300.000	500.000
Hardener					
Viscosity at:	25°C	IO-10-95	mPas	170.000	350.000
Pot life	25°C (40mm;100ml)	IO-10-53 (*)	min	15	25
	TYPICAL SYST	TEM CHARACTERISTICS			
Processing Data					
Resin Colour				Milky	
Hardener Colour				Black	
Mixing ratio by weight		for 100 g resin	g	100:45	
Mixing ratio by volume		for 100 ml resin	ml	100:50	
Density 25°C	Resin	IO-10-51 (ASTM D 1475)	g/ml	1,11	1,15
Density 25°C	Hardener	IO-10-51 (ASTM D 1475)	g/ml	0,95	0,99
Exothermic peak	25°C (40mm;100ml)	IO-10-53 (*)	°C	130	150
Initial mixture viscosity at: 25°C		IO-10-50 (EN13702-2)	mPas	100.000	150.000
Gelation time	25°C (1mm)	IO-10-73 (*)	h	2,5	3,0
	35°C (1mm)		h	1,5	2,0

AS 89.1/AW 89.1

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured:

Density 25°C		IO-10-54 (ASTM D 792)	g/ml	1,04	1,08
Hardness 25°C		IO-10-58 (ASTM D 2240)	Shore D/15	80	85
Glass transition (Tg)	24 h at R.T.	IO-10-69 (ASTM D 3418)	°C	54	60
	2hrs at 80°C		°C	80	86
Maximum Tg		IO-10-69 (ASTM D 3418)	°C	84	90
Shear strength by tensio	n:				
- Inox steel AISI 316 ci	IO-10-80 (ASTM D 1002) MPa	13	17	
- Inox steel AISI 316 ca		MPa	19	23	
- Inox steel AISI 316 ca		MPa	21	25	
- Inox steel AISI 316 ci		MPa	26	32	
- Inox steel AISI 316 c		MPa	14	18	
 Aluminium cured 2hrs 		MPa	26	32	
 Aluminium cured 2hrs 		MPa	14	18	
 Carbon composite cu 		MPa	20	25	
 Carbon composite cu 		MPa	32	39	
Flexural strength		IO-10-66 (ASTM D 790)	MN/m²	80	90
Maximum strain		IO-10-66 (ASTM D 790)	%	5	8
Strain at break		IO-10-66 (ASTM D 790)	%	6	10
Flexural elastic modulus		IO-10-66 (ASTM D 790)	MN/m²	1.800	2.200
Tensile strength		IO-10-63 (ASTM D 638)	MN/m²	48	54
Elongation at break		IO-10-63 (ASTM D 638)	%	4	6
Compressive strength		IO-10-72 (ASTM D 695)	MN/m²	60	70

IO-00-00 = Elantas Italia's test method. The correspondent international method is indicated whenever possible.

nd = not determined na = not applicable RT = TA = laboratory room temperature (23±2°C)

Conversion units: 1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa

^(*) for larger quantities pot life is shorter and exothermic peak increases

^(**) the brackets mean optionality
(***) The maximum operation The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

AS 89.1/AW 89.1

Instructions: The surfaces must be clean and dry. Generally a mechanical abrasion or sanding followed by

degreasing with solvent (ex. acetone) is sufficient. Add the appropriate quantity of hardener to the resin, mix carefully. Once applied, the system is moisture and carbonic anhydride sensitive: quickly cover the junction or cure in the oven. The final cleaning of the equipment can be carried

out with normal solvent such as acetone, nitro, etc.

Curing / Postcuring: Post curing is always advisable for RT curing systems in order to stabilize the component and to

reach the best properties. It is necessary when the component works at a high temperature.

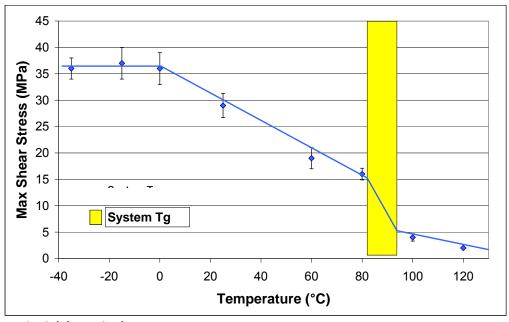
Storage: Epoxy resins and their hardeners can be stored for two years in the original sealed containers

stored in a cool, dry place.

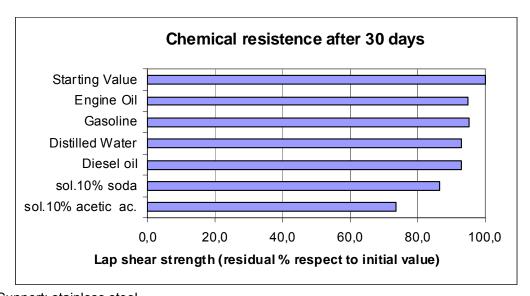
Handling precautions:

Refer to the safety data sheet and comply with regulations relating to industrial health and waste

disposal.


emission date: February 2011 revision n° 01 September 2011

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.


AS 89.1/AW 89.1

Dependence from temperature of the Lap shear strength (ASTMD1002)

Support: stainless steel Curing cycle: 2hrs at 80°C

Lap shear strength after immersion in different media (ASTM D1002)

Support: stainless steel Curing cycle: 2hrs at 80°C

The lap shear strength was determined after immersion for 30 days at 23±2 °C.